RLINK User Manual

Introduction

Summary

RLINK is a long-distance wireless data link communication module developed by blicube.LLC, supporting Point to Point and Point to Multipoint. Using two RLINK modules to form a pair of data links for mutual communication, when one connected to the device end and the other connected to the computer end. With three or more RLINK modules, it can be used for Point to Multipoint.

Based on bulid-in P900 module, RLINK has the characteristics of high transmission power, high link rate, high receiving sensitivity, etc. The ground-to-air communication distance is up to 60KM, the transmitting power can reach 1W, besides the module supports wide voltage input (5~35V) and high-speed frequency hopping. The module has the operating temperature range of -40 to 80 degrees, with shell of CNC aviation aluminum alloy materials.

Figure 1.1 RLINK module

Technical Specifications

  • Performance
ItemSpecification
Frequency902-928MHz
Spreading MethodFrequency Hopping
Encryption Optional(see –AES option)
RangeUp to 60 KM(in theory)
Forward Error Detection      Hamming
BCH Golay
Reed-Solomon
Error Detection32 bits of CRC, ARQ
Output Power100mW-1W(20-30dBm)
Serial Interface3.3V TTL
Baud Rate57600(default & changeable)
Link Rate57.6 – 276 kbps
Sensitivity (@10-4)-114 dBm @ 57.6 kbps
-112 dBm @ 115.2 kbps
-109 dBm @ 172.8 kbps
-107 dBm @ 230.4 kbps
Blocking         +/- 1 MHz > 55 dBc
+/- 2.5 MHz > 60 dBc
+/- 5 MHz > 65 dBc
> 930 MHz > 70 dBc
< 890 MHz > 70 dBc
Supply Voltage5~35v
Antenna InterfaceSMA
Environmental-55~85℃
Size50mm*38mm*14mm
Weight39g
Power Waste1.5W

Physical Dimension

The module size is shown in Figure 1.2. The mounting hole is a through hole with a diameter of 3.2, which is suitable for M3 bolt.

Figure 1.2 The physical dimension of RLINK

Use Guide

Interface

The RLINK module has two GH1.25 interfaces, shown in Figure 2 .1, where the left side is the power supply interface, which is recommended to use the provided circuit board for power supply, and the right side is a serial interface.

Figure 2.1 The interfaces of RLINK

Default Parameter

RLINK has been configured when you get it. The default link rate is 230 kbps, the boud rate of serial interface is 57600, and the default broadcast mode is Point to Point. If you want to modify the relevant parameters, please refer to Part 3 for custom configurations.

Communication

  • Pixhawk Flight Controller

Please connect the RLINK serial interface to controller’s Telem1 or Telem2 interface.

  • Other Devices

Please follow the interface definition to connect the RLINK serial interface to other device serial interface (RX-TX TX-RX GND-GND), if needed.

Power Suply

Since output power is up to 1W, some controller’s and computer’s interfaces have not the ability to supply such high power, it is recommended strongly that using a separate battery to supply power for RLINK for the stability.

Ground Station

Connect RLINK(the ground end) to computer as a monitor via a data cable, it can be auto connected when using QGroundControl. While when using Mission Planner as your ground station, it is necessary to select communication port and baud rate as shown in figure 2.2 at first, click CONNECT and then wait for the connection to complete.

Figure 2.2 Settings in Mission Planner for RLINK

Configuration

RLINK has been configured at the factory and generally does not require additional configuration. If you need to modify the parameters, you can customize the configuration according to the instructions below.  

Enter Configuration Mode

Connect RLINK(the ground end) to the computer via a data cable at first, make sure the your serial assistant can communicate with RLINK, press and hold the RLINK CONFIG key with a thimble or other sharp object. The RLINK will enter configuration mode when the serial assistant pops up the NO CARRIER 0K prompt and then release CONFIG key.

Figure 3.1 Enter configuration mode

After entering configuration mode, the configuration can be completed by sending the relevant parameters via the serial assistant (all with OK after successful configuration). Noting that every configuration command needs to be followed by a carriage return.

Common Commands Reference

  • Common commands

ATS101: Operator Mode(0 – Master;1 –Repeater;2 – Slave)

ATS133: Network Type(0 – Point to Mutlipoint;1 – Point to Point)

ATS102: Serial Baud Rate(0 – 230400;1 – 115200;2 – 57600;3 – 38400;4 – 28800;5 – 19200;6 – 14400;7 – 9600;8 – 7200;9 – 4800;10 – 3600;11 – 2400;12 – 1200;13 – 600;14 – 300)

ATS103: Wireless Link Rate(0 – 172800;1 – 230400;2 – 276480;3 – 57600;4 – 115200)

ATS108: Output Power(20 – 100;21 – 125;22 – 160;23 – 200;24 – 250;25 – 320;26 – 400;27 – 500;28 – 630;29 – 900;30 -1000)

ATS104: Network Address(1 ~ 4294967295)

ATS105: Unit Address (1 ~ 65535)

ATS140: Destination Address (1 ~ 65535)

  • Load Factory Default Configuration
AT&amp;F10: Master of Point to Point
AT&amp;F11: Slave of Point to Point
AT&amp;F12: Repeater of Point to Point
AT&amp;F7: Master of Point to Multipoint
AT&amp;F8: Slave of Point to Multipoint
AT&amp;F9: Repeater of Point to Multipoint

Point to Point Configuration

Please copy the reference commands to the serial assistant, press enter and then click Send, and the configuration is successful with OK:

Master (ground end) parameter settings:

  • Note:
ATS105: 1;
ATS140: from 2 to 65535.
  • Example:

Set to Master mode, Baud rate of 57600, Link rate of 230400, Network address 1234567890, Output power 100mW, Unit address 1, Destination address 2.

Please follow commands below to set RLINK:

AT&F10
ATS101=0
ATS102=2
ATS103=1
ATS104=1234567890
ATS108=20
ATS105=1
ATS140=2
AT&V
AT&W

Slave (remote) parameter settings:

  • Note:
ATS105: from 2 to 65535;
ATS140: 1.
  • Example:

Set to Slave mode, Baud rate of 57600, Link rate of 230400, Network address 1234567890, Output power 100mW, Unit address 2, Destination address 1.

Please follow commands below to set RLINK:

AT&F11
ATS101=2
ATS102=2
ATS103=1
ATS104=1234567890
ATS108=20
ATS105=2
ATS140=1
AT&V
AT&W

Point to Mutlipoint Configuration

Point to Mutlipoint configuration is complex, if required, please contact customer service for configuration.

Precautions

  • RLINK has been configured to be ready to use, if you modify the parameters of RLINK that cannot be used normally, please contact customer service.
  • This product is a wireless digital transmission link, suitable for unobstructed environment, stable communication distance by the impact of the actual application site.
  • RLINK has a maximum power of 5W, and if your computer or RLINK is not working properly, check the RLINK power supply.
  • Remote RLINK and ground-end RLINK can be used interchangeably if used in Point to Point mode, and not interchangeable in Point to Mutlipoint mode.

Purchase

The Link to Purchase

AliExpress: RLINK

The List of a RLINK Kit

Express Delivery

Appropriate logistics methods need to be adopted according to the actual situation.

Wholesale

Wholesale prices vary depending on the quantity of the wholesale, please contact customer service for more details.

RLINK用户手册

系统介绍

系统简介

RLINK是BLI(北力电子)研发的远距离无线数据链路通讯模块,既支持点对点通信模式,也支持一站多机。通过两个RLINK模块,一个接设备端、一个接电脑端,即可组成一对互相通信的数据链路。使用三个及以上RLINK模块,可用于一站多机。

RLINK模块基于P900模组设计,拥有高功率、高速率、高接收灵敏度等特性。地空通信距离高达30KM以上,设备为航空CNC外壳,发射功率可达1W,工业级工作范围(-40~80度),宽压输入(5~35V),高速跳频。

图1.1 RLINK系统实物图

技术参数

  • 性能指标
项目参数
工作频率902-928MHz
传输技术跳频
加密Optional
最远通信距离60KM
输入电压5~35v
输出功率100mW-1W(20-30dBm)
串行接口3.3V TTL
波特率(出厂)57600(可改)
空速115 – 276 kbps
数据接口GH1.25-5P
天线接口SMA内针
工作温度-55~85度
尺寸50mm*38mm*14mm
重量39g
工作功耗1.5W

尺寸与安装

模块尺寸如图1.2所示,安装孔位为直径3.2的通孔,适用于M3的螺柱安装。

图1.2尺寸示意图

连接与使用

接口定义

RLINK模块共有两个GH1.25的接口如图2.1所示。如图2.1左部分电源输入接口,可直接使用提供的电源接口配线使用;右部分为串口接口。

图2.1 RLINK接口图

出厂配置

出厂默认为空速115K,接口速率为57600,点对点广播模式。如需修改如波特率、空速、配置一站多机等模式,请参考第3部分自定义配置。

  • 与设备连接参考

Pixhawk系列:插入到飞控的telem1或者telem2 接口。

其他硬件:请参考串口接口引脚图:RLINK的GND接设备的GND,RLINK的Tx接设备的Rx,RLINK的Rx接设备的Tx。

PS: 由于RLINK发射功率高达1W,部分pixhawk硬件数传口和地面站电脑无此供电能力,请给RLINK单独供电。

  • 地面站使用

飞控默认telem端口波特率为57600,使用RLINK前请注意当前所使用的串口波特率是否匹配

与PIX的地面站都兼容,mp地面站连接时请选择端口和波特率,点连接;

qgc地面站插上后自动连接。

图2.2 MP地面站连接示意图

自定义配置

RLINK出厂时已经已经配置完成,一般不需要您进行本文的配置,如果您有需求可以根据下方说明进行自定义配置或联系我们技术支持。

进入配置模式

先将RLINK通过数据线连接上电脑(配置模式下的串口波特率为9600),用顶针或其他设备按住RLINK的CONFIG按钮,然后开机,即可进入配置模式。成功进入到配置模式可看到,串口助手弹出NO CARRIER 0K提示即为已进入配置模式。

图3.1 成功进入配置模式示意图

在串口助手中填入参数后,点发送,就可以完成配置(配置成功后面都带有ok),注意配置命令后面需要加回车(CRLF)。

  • 常用参数说明

ATS101: 操作模式(0 – 主机;1 – 中转;2 – 从机)
ATS103: 通讯模式(0 – 点对多点;1 – 点对点)
ATS102: 串口波特率(0 – 230400;1 – 115200;2 – 57600;3 – 38400;4 – 28800;5 – 19200;6 – 14400;7 – 9600;8 – 7200;9 – 4800;10 – 3600;11 – 2400;12 – 1200;13 – 600;14 – 300)
ATS103: 空速(0 – 172800;1 – 230400;2 – 276480;3 – 57600;4 – 115200)
ATS108: 发射功率(20 – 100;21 – 125;22 – 160;23 – 200;24 – 250;25 – 320;26 – 400;27 – 500;28 – 630;29 – 900;30 -1000)
ATS104: 网络IP(1 ~ 4294967295)
ATS105: 设备地址(1 ~ 65535)
ATS140: 目标地址(1 ~ 65535)
AT&F10: 设置点对点主机的默认参数
AT&F11: 设置点对点从机的默认参数
AT&F12: 设置点对点中转的默认参数
AT&F7: 设置点对多点主机的默认参数
AT&F8: 设置点对多点从机的默认参数
AT&F9: 设置点对多点中转的默认参数

点对点模式通信配置

点对点模式只需复制下方参数粘贴至串口助手后,按回车键再点击发送,就可以完成配置(配置成功后面都带有ok):

  • 主机设置(地面端) 参数:

ATS105范围:1;
ATS140范围:2 ~ 65535;

以下参数说明:设为主机模式、波特率为57600、空速为230400、网络IP1234567890、发射功率100mW、设备地址1、目标地址2。

参数

AT&F10
ATS101=0
ATS102=2
ATS103=1
ATS104=1234567890
ATS108=20
ATS105=1
ATS140=2
AT&V
AT&W
  • 从机设置(天空端) 参数:

ATS105范围:2 ~ 65535
ATS140范围:1;

以下参数说明:设为从机模式、波特率为57600、空速为230400、网络IP1234567890、发射功率100mW、设备地址2、目标地址1。

参数

AT&F11
ATS101=2
ATS102=2
ATS103=1
ATS104=1234567890
ATS108=20
ATS105=2
ATS140=1
AT&V
AT&W

一站多机模式配置

       一站多机模式配置相对复杂,如有需求请联系客服进行配置。

注意事项

1、使用本公司RLINK套装,出厂已配置好,支持即插即用,若自己更改配置后RLINK不能正常使用,请联系客服。

2、本产品为无线数传链路,适用于无遮挡环境,稳定通信距离受实际应用场地的影响。

3、RLINK最大功率为5W,若电脑或设备不能正常工作,请检查RLINK供电。

4、若只是一对数传即点对点模式使用,移动端RLINK和地面端RLINK可任意互换使用;若为一站多机模式,不可互换使用。

RLINK购买

1、购买地址

淘宝店铺:北力电子

2、发货清单

3、物流

       本店国内默认顺丰包邮,国外客户需根据实际情况采取合适的物流方式。

4、关于批发

       根据批发数量的不同,批发价格不等,有批发需求请联系客服。

HDMI to CSI bridge Handbook

Overview

This module takes the incoming HDMI signal and converts it into a separate CSI signal and I2S audio signal. HDMI input supports up to 1080P60Hz. It works well on raspberry pi, there are three versions of this module in history(C779、C780、C790). C790 is the latest version. C790 has mitigate HDMI backpowering,also has two csi channels and four csi channels at the same time.

Features

C790

hardware parameters

  • HDMI input: supports up to 1080P60Hz on Raspberry Pi
  • HDMI to CSI-2 bridge chip:Toshiba TC358743XBG
  • 4 CSI-2 channels & clock
  • The CSI-2 interface, with 15 pin FPC seat, spacing 1.0 mm, is located on the front of the C790 module.
  • The CSI-2 interface, with 22 pin FPC seat, spacing 0.5 mm, is located on the back of the C790 module.
  • Size: 30 x 45 mm
  • Install:4 x M2.5
  • Power supply:3.3V
  • Weight: 10g

interface

C790 has two csi output interface. In fornt of C790, the CSI-2 interface is 15 pin FPC seat, spacing 1.0 mm. In back of C790, the CSI-2 interface is 22 pin FPC seat, spacing 0.5 mm.

size

C780

hardware parameters

C780A

  • HDMI input: supports up to 1080P50Hz on raspberry pi(Limited by the number of CSI-2 channels)
  • HDMI to CSI-2 bridge chip:Toshiba TC358743XBG
  • 2 CSI-2 channels & clock
  • CSI-2 interface: 15 pin FPC seat, spacing 1.0 mm
  • Size: 30 x 65 mm (unbroken PCB size); 30 x 45 mm (PCB size after breaking)
  • Install:6 x M2.5
  • Power supply:3.3V
  • Weight: 9g

C780B

  • HDMI input: supports up to 1080P60Hz on raspberry pi
  • HDMI to CSI-2 bridge chip:Toshiba TC358743XBG
  • 4 CSI-2 channels & clock
  • CSI-2 interface: 22 pin FPC seat, spacing 0.5 mm
  • Size: 30 x 65 mm (unbroken PCB size); 30 x 45 mm (PCB size after breaking)
  • Install:6 x M2.5
  • Power supply:3.3V
  • Weight: 9g

interface

The wiring of audio part is shown in Figure.

size

The size of C780 is shown in Figure. There are 6 mounting holes with a diameter of 2.75mm, which are suitable for M2.5 screws.

As shown in Figure, the user can directly fix the module on the raspberry pi zero.C780 is designed to be broken, and the hole spacing before breaking can be perfectly installed with most series of raspberry pi.

C779

Software demo

The use guide of C790/C780/C779 depends on the official Raspberry Pi OS version you are using. Different versions have different usage methods. If you have some questions, Join our BLIKVM Discord Community for Support, FAQ & News!

You can also refer to Raspberry pi official forum post

To use the kernel drivers, please update your system. There are a few things that have changed with the 5.4 kernel, so these instructions are for 5.4 or later. If “uname -a” reports anything less, then fix this before proceeding.

pi@raspberrypi:~ $ uname -a
Linux raspberrypi 5.10.63-v7l+ #1459 SMP Wed Oct 6 16:41:57 BST 2021 armv7l GNU/Linux

1. Update & upgrade the raspberry pi system (It will take a long time depend on the different country)

sudo apt-get update
sudo apt-get upgrade

2. Enable camera module (the camera is enabled by default in Raspberry pi Bullseys OS)

sudo raspi-config
sudo reboot

Navigate to ‘Interfacing Options’ and hit Enter. Now select the ‘Camera’ option, and hit the Enter key to enable it. Select “Finish” and select to reboot your Raspberry Pi.

[NOTE] reboot is important!!

3. Edit /boot/config.txt (that will need sudo)

sudo nano /boot/config.txt

Add the line:

dtoverlay=tc358743

Add the line if your shield support audio like C780 or C790

dtoverlay=tc358743-audio

please append the If (and only if) you have a device such as the C780 or C790 that supports the 22pin connector with all 4 lanes wired out, and are using a Compute Module with the CAM1 connector that also has all 4 lanes wired up, you can use

dtoverlay=tc358743,4lane=1

4. Check the amount of memory assigned to the CMA heap with “dmesg | grep cma”. The first line should be along the lines of

pi@raspberrypi:~ $ dmesg | grep cma
[    0.000000] cma: Reserved 256 MiB at 0x000000001ec00000

If it reports less than 96MB assigned to CMA, then edit /boot/cmdline.txt and add

cma=96M

to the start of the line. Do NOT add any carriage returns.

5. Reboot. If all is well you should get a /dev/video0 device, and “v4l2-ctl –list-devices” will tell you that it is provided by Unicam. After connecting all the cables, power on the Raspberry Pi, the C790 indicator light is normally green, and after opening the Raspberry Pi terminal, enter the following command:

pi@raspberrypi:~ $ ls /dev/video0
/dev/video0
pi@raspberrypi:~ $ v4l2-ctl --list-devices
bcm2835-codec-decode (platform:bcm2835-codec):
	/dev/video10
	/dev/video11
	/dev/video12
	/dev/video18
	/dev/media1

bcm2835-isp (platform:bcm2835-isp):
	/dev/video13
	/dev/video14
	/dev/video15
	/dev/video16
	/dev/media0

unicam (platform:fe801000.csi):
	/dev/video0
	/dev/video1
	/dev/media2

6. This driver puts all the control in the hands of the user, or the user’s application. By default there is no EDID loaded into the chip to allow it to tell the HDMI source what resolutions are supported. There are EDID editors around. If you create a file edid.txt, then you can push this to the device using

The comment of edid.txt file:

00ffffffffffff005262888800888888
1c150103800000780aEE91A3544C9926
0F505400000001010101010101010101
010101010101011d007251d01e206e28
5500c48e2100001e8c0ad08a20e02d10
103e9600138e2100001e000000fc0054
6f73686962612d4832430a20000000FD
003b3d0f2e0f1e0a2020202020200100
020321434e041303021211012021a23c
3d3e1f2309070766030c00300080E300
7F8c0ad08a20e02d10103e9600c48e21
0000188c0ad08a20e02d10103e960013
8e210000188c0aa01451f01600267c43
00138e21000098000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
cd ~
sudo nano edid.txt
#copy the above commend in edid.txt, save&exit;
pi@raspberrypi:~ $ v4l2-ctl --set-edid=file=edid.txt --fix-edid-checksums

CTA-861 Header
  IT Formats Underscanned: yes
  Audio:                   yes
  YCbCr 4:4:4:             no
  YCbCr 4:2:2:             no

HDMI Vendor-Specific Data Block
  Physical Address:        3.0.0.0
  YCbCr 4:4:4 Deep Color:  no
  30-bit:                  no
  36-bit:                  no
  48-bit:                  no

CTA-861 Video Capability Descriptor
  RGB Quantization Range:  yes
  YCC Quantization Range:  no
  PT:                      Supports both over- and underscan
  IT:                      Supports both over- and underscan
  CE:                      Supports both over- and underscan

7. The driver does NOT automatically switch to the resolution detected. Use the command:

pi@raspberrypi:~ $ v4l2-ctl --query-dv-timings
	Active width: 1280
	Active height: 720
	Total width: 1650
	Total height: 750
	Frame format: progressive
	Polarities: -vsync -hsync
	Pixelclock: 74250000 Hz (60.00 frames per second)
	Horizontal frontporch: 0
	Horizontal sync: 370
	Horizontal backporch: 0
	Vertical frontporch: 0
	Vertical sync: 30
	Vertical backporch: 0
	Standards: 
	Flags: 

You MUST set the timings via “v4l2-ctl –set-dv-bt-timings”. You can pass in an index to the detected mode, or use:

v4l2-ctl --set-dv-bt-timings query

to select the currently detected timings.

v4l2-ctl -V

should now reflect the resolution detected.

8. The chip supports two formats – BGR3 (the default) and UYVY. BGR3 is 24bpp, and UYVY is YUV4:2:2 16bpp.

Over the normal 2 CSI-2 lanes the data rate is such that BGR3 can run at a maximum of 1080p30, whilst UYVY will go up to 1080p50. Use the following command to select UYVY, however your application may override that.

v4l2-ctl -v pixelformat=UYVY

9. Check that the audio drivers / card is available to ALSA.

pi@raspberrypi:~ $ arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: tc358743 [tc358743], device 0: bcm2835-i2s-dir-hifi dir-hifi-0 [bcm2835-i2s-dir-hifi dir-hifi-0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0

Note: card 1 means that the card number for the TC358743XBG is “1” and it might be different.

10. Install GStreamer tool;

sudo apt install gstreamer1.0-tools

Check gstreamer tool version:

pi@raspberrypi:~ $ gst-launch-1.0 --version
gst-launch-1.0 version 1.18.4
GStreamer 1.18.4
http://packages.qa.debian.org/gstreamer1.0

Note:

Different versions have different command line parameters, which is very annoying.

11. Use gstreamer to record video and audio

#GStreamer v1.14 command
gst-launch-1.0 v4l2src io-mode=5 ! video/x-raw, format=UYVY, framerate=25/1 ! v4l2h264enc output-io-mode=4 ! video/x-h264,profile=high ! h264parse ! queue ! matroskamux name=mux ! filesink location=foo.mkv alsasrc device=hw:1 ! audio/x-raw,rate=48000,channels=2 ! audioconvert ! avenc_aac bitrate=48000 ! aacparse ! queue ! mux.

foo.mkv is the output file.

If your gstreamer is version 1.8 or above, you can try the following test command. In addition, alsasrc device=hw:1 represents the sound card of TC358743, you can use “arecord -l” to query.

#The command to recode a video with audio. (GStreamer 1.18.4)
gst-launch-1.0 -vvv v4l2src ! "video/x-raw,framerate=30/1,format=UYVY" ! v4l2h264enc extra-controls="controls,h264_profile=4,h264_level=13,video_bitrate=256000;" ! "video/x-h264,profile=high, level=(string)4.2" ! h264parse ! queue ! matroskamux name=mux ! filesink location=foo.mkv alsasrc device=hw:1 ! audio/x-raw,rate=48000,channels=2 ! audioconvert ! avenc_aac bitrate=48000 ! aacparse ! queue ! mux.
#The sample command to recode a video without audio. (C779 doesn't support audio)
gst-launch-1.0 -vvv v4l2src ! "video/x-raw,framerate=30/1,format=UYVY" ! v4l2h264enc extra-controls="controls,h264_profile=4,h264_level=13,video_bitrate=256000;" ! "video/x-h264,profile=high, level=(string)4.2" ! h264parse ! queue ! matroskamux name=mux ! filesink location=foo.mkv
Press CTRL+C to end recording.

PS: We recommend that you modify the above framerate parameter to the actual frame rate of your HDMI signal, the actual frame rate value is from the result of ‘v4l2-ctl –query-dv-timings’ command.

For the above HDMI device, because the frame rate is 60, so we modify the framerate parameter to 60 like the followint command.

Record the video only:

gst-launch-1.0 -vvv v4l2src ! "video/x-raw,framerate=60/1,format=UYVY" ! v4l2h264enc extra-controls="controls,h264_profile=4,h264_level=13,video_bitrate=256000;" ! "video/x-h264,profile=high, level=(string)4.2" ! h264parse ! queue ! matroskamux name=mux ! filesink location=foo.mkv

Record the video and audio: (if your shield supports audio also)

gst-launch-1.0 -vvv v4l2src ! "video/x-raw,framerate=60/1,format=UYVY" ! v4l2h264enc extra-controls="controls,h264_profile=4,h264_level=13,video_bitrate=256000;" ! "video/x-h264,profile=high, level=(string)4.2" ! h264parse ! queue ! matroskamux name=mux ! filesink location=foo.mkv alsasrc device=hw:1 ! audio/x-raw,rate=48000,channels=2 ! audioconvert ! avenc_aac bitrate=48000 ! aacparse ! queue ! mux.

Note: alsasrc device=hw:1 – “1” means the audio card number, You must change to correct audio card number.(Query the car number via ‘arecord –l’, refer to step 9)

12. For old raspberry pi os, you can use Raspistil to take photo.

Packing List

C790

Notes: We will use antistatic bag to pack.

C780

C779

Test video

C780A test:https://www.youtube.com/watch?v=ecqyINoiHNQ

C780B test:https://www.youtube.com/watch?v=nc-hwPT2Uak&t=15s

Purchase Link

For Chinese customers: Taobao_blicube

For Global customers: Aliexpress_blicube

GRTK User Manual

System Introduction

Introduction

GRTK is a dual-antenna high-precision differential positioning and directional module (Real Time Kinematics) independently developed by Blicube. A complete RTK system can be formed through two GRTK modules (one mobile terminal and one base station terminal).

The module is based on a new generation of high-performance GNSS SoC chip design,supports multi-system multi-frequency RTK positioning, supports dual-antenna high-precision orientation, and supports GPS&GLONASS&Beidou&Galileo&QZSS navigation and positioning. It is mainly for high-precision positioning and orientation requirements such as drones, robots and intelligent driving.

Figure 1.1 Physical image of GRTK centimeter-level positioning and orientation system

Parameters

  • Performance
Frequencies BDS B1I/B2I1
GPS L1/L2
GLONASS L1/L2
Galileo E1/E5b
QZSS L1/L2
Single Point Positioning (RMS) Horizontal:1.5m
Vertical:2.5m
DGPS (RMS) Horizontal:0.4m
Vertical:0.8m
RTK (RMS) Horizontal:1cm+1ppm
Vertical:1.5cm+1ppm
Heading Accuracy (RMS) 0.2 degree/1 m baseline
Velocity Accuracy (RMS) 0.03 m/s
Time Accuracy (RMS) 20 ns
Time to First Fix (TTFF) Cold start < 25 s
Initialization Time < 5s (typical)
Reacquisition < 1 s
Correction RTCM v2.3/3.0/3.2
Data Output NMEA-0183
Update Rate 20 Hz
Inertial Navigation Accuracy < 5% of distance travelled during GPS denied conditions
Working Temperature -20℃ to +85℃
Power Supply 5v to 35v
  • Physical size
Figure 1.2 Schematic diagram of physical size

Usage

Interfaces

The GRTK module can be used as a base station or as a mobile station. There are three interfaces in total, as shown in Figure 2.1. They are the Power port for powering the device, the com1 port for communication between the mobile station and the base station, and the com2 port for communicating with the flight controller to transmit positioning information. The com2 port includes uart2 and uart3, and the default use of uart2 is the serial port of flight control communication.

Figure 2.1 GRTK module interfaces diagram

In addition, there are four LED indicators on the front of the module. The three on the left display the module’s operating status, which are 3D Fix positioning status, operating error, and RTK positioning status; a single indicator on the right is used to display the power supply status.

The GRTK module supports dual antenna direction finding, where the left antenna(ANT1) is the master antenna, the right antenna(ANT2) is the slave antenna, and the single antenna needs to be connected to the master antenna.

Hardware connection

  • Base station connection
Figure 2.2 Base station connection diagram
Figure 2.3 Schematic diagram of base station tripod installation
  • Rover connection
Figure 2.4 Rover connection diagram
  • Dual-antenna rover connection
Figure 2.5 Dual antenna rover connection diagram

When the base station is not used, only the rover can be used as a conventional positioning device for positioning. The connection is shown in Figure 2.3.

The base station and the rover can be used together to form an RTK centimeter-level positioning system, and the base station supports plug and play.

The dual-antenna direction finding of the rover needs to keep the master-slave antenna consistent with the heading in accordance with the master-back-and-forward. The distance between the master-slave antennas should be greater than 30cm to ensure the direction finding accuracy.

Indicator light & Positioning status

There are 4 indicators on the GRTK module, the specific meanings are shown in the table below:

Light Status Describe
FIX On
Off
Enter 3D Fixed state.
Not in 3D Fixed state.
ERR On
Off
Error! The module does not work properly.
No error has occurred and is working properly.
RTK On
Off
Enter RTK Fixed state.
Not in RTK Fixed state.
PWR On
Off
The power supply is OK.
The power supply is abnormal.
  • When the Base is working properly, the status of lights :
    • PWR and FIX are on,the other lights are off.
  • When the Rover is working properly, there are two conditions in which the status of lights :
    • PWR and FIX are on,the other lights are off, that means Rover has been in 3D Fixed state.
    • PWR, FIX and RTK are on, the other lights are off, that means Rover has been in RTK Fixed state.

Positioning data description

The GRTK module outputs NMEA protocol positioning data by default, connects computer with GRTK module’s Tx2 and Rx2 by USB-to-TTL module, then you can use the serial assistant to read or configure the output message.

GRTK Rover and Base are factory configured, non-professionals do not configure equipment at will.PS: Please set the line break to CR&LF.

Rover with a single antenna

  • Output messages at 5Hz by factory default:
$GPGGA: Global positioning system fix data
$GPRMC: Recommended minimum data
$GPHDT: Output current heading information
$KSXT: Time, positioning and heading of GNSS receiver
  • Other message

If needed, you can send ASCII syntax by serial port to configurate it:

Configuration Format: GPXXX COMX XX(message + output port + output rate)
SAVECONFIG(Save configuration)
  • Reset

If output message is inconsistent with the factory during use, the output can be reset by following commands:

FRESET
GPGGA COM2 0.2  
GPRMC COM2 0.2  
GPHDT COM2 0.2  
KSXT COM2 0.2
SAVECONFIG
(PS:CR&LF here)

Rover with dual antennas for heading

  • Output messages at 5Hz by factory default:
$GPGGA: Global positioning system fix data
$GPRMC: Recommended minimum data
$GPHDT: Output current heading information
$KSXT: Time, positioning and heading of GNSS receiver
  • Other message

If needed, you can send ASCII syntax by serial port to configurate it:

Configuration Format: GPXXX COMX XX(message + output port + output rate)
SAVECONFIG(Save configuration)
  • Reset

If output message is inconsistent with the factory during use, the output can be reset by following commands:

FRESET
GPGGA COM2 0.2  
GPRMC COM2 0.2  
GPHDT COM2 0.2  
KSXT COM2 0.2
SAVECONFIG
(PS:CR&LF here)

Guidance for Use

The current version of the GRTK cm positioning system supports the output of NMEA protocol positioning data, the following guidance is based on the Ardupilot firmware(v4.2.0 or higher) using the Mission Planer ground station.

Connection for modules

  • Have the hardware, including Pixhawk controller, GRTK, radio, battery, etc, shown in Figure 3.1 ready for connection before wiring:
Figure 3.1 Hardware physical diagram
  • Rover Base and data transmissions need to be supplied separately.

The communication mode between Rover and Base

GRTK can achieve RTK positioning by communicating through independent links between the base station and the rover station or by forwarding the base station data by the ground station.

  • Independent link
    • Please connect the COM2 port of the GRTK Rover to the GPS port of Pixhawk and the com1 port to connect the data transmission device that communicates with the Base sideb) Please connect the GRTK Base com1 port to the computer through the serial port
    • Connect antenna to the GRTK Base and connect the com1 port of the base side to the data transmission device that communicates with the Rover terminal.
  • Forwarding the base station data by the ground station
  1. Please connect the COM2 port of the GRTK Rover to the GPS port of Pixhawk.
  2. Connect the GRTK Base com1 port to the computer through the serial port.
  3. Open Mission Planner, find the Optional Hardware at the Initial Setup, and select RTK/GPS Inject.

4. Choose the correct com port and click Connect.

5. Wait for about one minute for Base to complete the base station positioning, at this time the red in the RTCM column turns green, and the latitude and longitude information of the current base station is displayed, that is, the ground station has been realized to forward the Base positioning data

Mission Planner settings

GRTK Base supports plug-and-play and does not require additional setup at the ground station. However, before actually using RTK, you need to set the parameters for flight control in MP, and the necessary parameter settings are given below, which can be referred to as follows:

https://ardupilot.org/copter/docs/common-gps-for-yaw.html

  • Configure the GPS protocol as NMEA and set the GPS data refresh rate to 5Hz.
    • GPS_TYPE is set to 5 to configure the GPS protocol as NMEA.
    • GPS_RATE_MS is set to 200ms which means the GPS data refresh rate is 5Hz.
  • GPS direction needs to be enabled using dual antenna direction measurement.
    • AHRS_EKF_TYPE is set to 3 to choose EKF3.
    • EK2_ENABLE is set to 0 to disable EKF2.
    • EK3_ENABLE is set to 1 to enable EKF3.
    • EK3_MAG_CAL is set to 5 to enable GPS direction.
    • EK3_SRC1_YAW is set to 2 to GPS.

Positioning testing

  • Use Rover to draw a basketball court line by following the real line.
Figure 3.4 GRTK test result
  • Unmanned vehicle automatic route mission measurement.
Figure 3.5 GRTK auto-mission control test result

Modes of Base Station

GRTK Base has two modes of operation,self-optimizing base station and fixed base station.

  • Self-optimizing base stationWhen it is not clear exactly where the base station will be located, Base will position itself and average itself for a certain period of time after installation as the coordinates of the base station.
  • Fixed base station: When know the exact coordinates of the base station location will be set up, you need to enter that exact coordinate into the base station.

Self-optimizing base station

  • Base station default operating mode is self-optimizing base station. Using USB to TTL module to connect the base station serial 2 (Rx2&Tx2) to the computer, the computer runs serial debugging assistant, open the corresponding serial port with the baud rate of 115200. The base station returns the current location information.
  • Send the following command (PS: Commands need to end with a line break) to base station by serial to complete configuration.
  • mode base time 60 1.5 2.5

Within 60-second automatic positioning of the base station, or when the standard deviation of horizontal positioning is no more than 1.5 m and that of vertical positioning is no more than 2.5 m, set the average value of horizontal and vertical positioning results as the base station coordinates. Restarting the base station triggers a new calculation and reposition of the datum coordinates. Users can modify parameters according to their needs.

  • After configuration, send the following command (PS: Commands need to end with a line break) to base station by serial to save configuration.
  • saveconfig

Fixed base station

Fixed base station mode configuration is divided into two steps, the first step is to obtain the current exact coordinates, the second step is to enter the base station’s precise coordinates into the base station.

Step1: Get the current exact coordinates

Using the USB-to-TTL module to connect the base station serial 2 to the computer, the computer runs the serial debugging assistant, open the corresponding serial port, Baud rate of 115200. The base station returns the current location information.

  • Send the following command (PS: Commands need to end with a line break) to base station by serial to complete configuration.
  • mode base time 60 1.5 2.5

Within 60-second automatic positioning of the base station, or when the standard deviation of horizontal positioning is no more than 1.5 m and that of vertical positioning is no more than 2.5 m, set the average value of horizontal and vertical positioning results as the base station coordinates. Restarting the base station triggers a new calculation and reposition of the datum coordinates. Users can modify parameters according to their needs.

Note that the obtained WGS84 coordinates indicate that the base station initialization is complete when the data is stable.

Step2: Enter the exact coordinates of the base station into the base station

  • Copy the location information of the base station output

#BESTPOSA,COM2,0,91.0,FINE,2164,52077.000,420887,32,18;SOL_COMPUTED,FIXEDPOS,32.02245993006,118.85899391094,68.5505,2.0115,WGS84,0.0000,0.0000,0.0000,””,0.000,0.000,40,28,28,16,0,06,03,53*17b29c25 (Sample data)

  • Analyze and get longitude, latitude and elevation data

32.02245993006,118.85899391094,68.5505(Please replace it based on the actual measurement data

  • The configuration command is generated based on the exact coordinates of the base station

mode base 32.02245993006 118.85899391094 68.5505

Send the configuration command (note that the command needs to end with a line break) to the base station through a serial port.

  • When the configuration is complete, the following command (note that they need to end with a line break) is sent to the base station through a serial port to save the configuration.
  • saveconfig

Precautions

  • With our GRTK Kit, the base station side supports plug-and-play. If only Rover is purchased, the use of other companies’ base station end requires additional RTK base station configuration at the ground station, which does not guarantee compatibility and positioning accuracy.
  • This product is positioning equipment, which needs to search for satellite positioning, try to test it in the open and undisturbed site.
  • The positioning status of GRTK should be mainly decided by the ground station.

Purchase

Link for purchase

AliExpress: GRTK (BLI Store)

List

Express delivery

  • Appropriate logistics methods need to be adopted according to the actual situation.

Wholesale

  • Wholesale prices vary depending on the quantity of the wholesale, please contact customer service for more details.

Test videos

  1. Centimeter-level positioning accuracy test.
  2. The base station is quickly deployed within 30s.
  3. Stationary positioning test & drone light painting with GRTK.     

BLIKVM User Manual

Overview

BLIKVM is a Open KVM, it has three versions: CM4 Board, Raspberry HAT, PCIE Board. This device helps to manage servers or workstations remotely, regardless of the health of the operating system or whether one is installed. You can fix any problem, configure the BIOS, and even reinstall the OS using the virtual CD-ROM or Flash Drive. Here you will find comprehensive information about all aspects of the operation of BLIKVM. Join our BLIKVM Discord Community for Support, FAQ & News!

Features

  • Video capture (1080P 60Hz)
  • Keyboard forwarding
  • Mouse forwarding
  • ATX
  • Fan Control
  • Fullscreen mode
  • Paste text from clipboard
  • VPN support
  • Mass Storage Drive (emulate a CD-ROM or Flash Drive)
  • Multiport KVM over IP
  • OLED to display system info, like temp, uptime, IP
  • Password authentication
  • Support multiple languages.
  • Wake-on-LAN

Links

Github: https://github.com/ThomasVon2021/pikvm-CM4-Board

Test video:

https://www.youtube.com/watch?v=d7I9l5yG5M8

https://www.youtube.com/watch?v=aehOawHklGE

Getting started

BLIKVM-CM4 guide

Installation requirements

If your BLIKVM-CM4 version is plug-n-play, you will only need the following things:

  • USB-C to USB-A cable.
  • HDMI cable.
  • Power supply unit (5.1V 3A USB-C, recommended by the Raspberry Pi).

If your BLIKVM-CM4 version is pcb and shell, you will need the following things:

  • CM4 with 1Gb RAM or more.
  • MicroSD card (at least 16Gb, class 10 recommended).
  • USB-C to USB-A cable.
  • HDMI cable.
  • Power supply unit (5.1V 3A USB-C, recommended by the Raspberry Pi).

Basic setup

1、Flash the memory card.

2、Build BLIKVM according to the video instruction or review the instructions:

Video Guide: Metal case step by step

https://www.youtube.com/watch?v=aehOawHklGE

3、Connect BLIKVM to the computer according to the diagram below:

  • HDMI IN and otg port must be connected to the computer. ATX too, but it’s optional, read below. There should be no USB hub between BLIKVM and the computer, as some UEFI/BIOS cannot detect them at the boot stage. BLIKVM supports 1080p60Hz or lower about HDMI source.
  • Connect Ethernet to the network and PWR IN to the BLIKVM power supply.

ATX connection

ATX controller interface(power on/off, reboot control, PWR and HDD ACT LEDs)

To manage the power of your computer, you will connect CN-ATX port to the computer.The user can use the ATX cable provided with the product to connect the product and the motherboard ATX switch of the controlled computer. The length of the ATX cable is 60CM, you can also use the double female Dupont cables.

BLIKVM-Pi-HAT guide

BLIKVM-PCIE guide

Flashing the OS image

From this video you can learn how to flash image quickly.How to flash the eMMC on a Raspberry Pi Compute Module 4 video

Using RPi Imager (Linux, MacOS and Windows)

1、If you use raspberry pi computing modules such as CM3 or CM4 EMMC,you can initialize EMMC through the usbboot. If you use an SD card, you can see the 2 part directly.
First, use the jumper cap to short the boot pin.Then connect the data cable to the USB OTG interface.Power on blikvm and observe the act light, the green light is always on.Taking Ubuntu system as an example:

# sudo apt-get install libusb-1.0-0-dev  
# git clone --depth=1 https://github.com/raspberrypi/usbboot
# cd usbboot
# make
# sudo ./rpiboot

If the content shown in the figure below appears, it indicates that EMMC initialization is successful.

2、Run RPi Imager:

3、Press CHOOSE OS and select Use custom image at bottom of the list:

4、After clicking on this item, select the image file (.img.xz), then click CHOOSE STORAGE.

5、Insert the memory card into the card reader. Choose the card reader from this list. Be careful and choose the right device:

6、After choosing the memory card, press the WRITE button. Confirm the operation when you are asked about it:

7、Wait for the process to finish. Get yourself a coffee or do some stretching:

8、Remove the memory card after successful completion:

Hardware Features

BLIKVM-CM4 hardware features

  • 1、HDMI IN port with I2S
  • 2、ATX controller interface (power on/off, reboot control, PWR and HDD ACT LEDs)
  • 3、USB3.0 port x 2
  • 4、USB-C OTG
  • 5、Real Time Clock (RTC)
  • 6、Gigabit Ethernet
  • 7、Activity LED
  • 8、Micro SD Card socket
  • 9、Power LED
  • 10、I2C display connector
  • 11、nRPI_BOOT Jumper
  • 12、USB-C power input
  • 13、FAN connector 5V
  • 14、CSI-2 date lanes switch
  • 15、CM4 Module Connectors

I2C display connector

The product comes standard with a monochrome OLED display with a resolution of 128×64, and the chip is SSD1306. The user connects the display to the product with the wiring of the display.

The module is connected to CM4 through the I^2^C interface. The wiring definition is shown in the following table. This is a library for the monochrome OLEDs based on SSD1306 drivers.

Follow the method below to enable OLED(Use the latest v3-hdmi-rpi4-latest.img,IIC is enabled by default).

Log in to PiKVM and run these commands:

# rw
# systemctl enable --now kvmd-oled //Enable OLED
# ro

GRTK用户手册

系统介绍

系统简介

GRTK是blicube(北力电子)独立研发的双天线高精度差分定位定向模块(Real Time Kinematics),通过两个GRTK模块(一个移动端,一个基站端)可组成完整的RTK系统。

该模块基于新一代国产高性能GNSS SoC芯片设计,支持多系统多频点RTK定位,支持双天线高精度定向,支持北斗导航定位,主要面向无人机、机器人及智能驾驶等高精度定位定向需求。

图1.1 GRTK厘米级定位定向系统实物图

技术参数

  • 性能指标

项目  
频点 BDS B1I/B2I1 GPS L1/L2 GLONASS L1/L2 Galileo E1/E5b QZSS L1/L2
协议 NMEA-0183,RTCM
时间精度(RMS) 20ns
单点定位(RMS) 平面:1.5m 高程:2.5m
DGPS (RMS) 平面:0.4m 高程:0.8m
RTK (RMS) 平面:1cm+1ppm 高程:1.5cm+1ppm
定向精度(RMS) 0.2度/1m基线
速度精度(RMS) 0.03m/s
工作温度 -20℃到+85℃
工作电压 支持宽压输入:5v-35v
工作功耗 2.5W

  • 实物尺寸

图1.2 实物尺寸示意图

连接与使用

接口定义

GRTK模块既可以作为基站也可以作为移动站使用,共有三个接口,如图2.1所示。分别是用于设备供电的Power口,用于移动站和基站通信的com1口以及用于与飞控通信传输定位信息的com2口,其中com2口包含串口2和串口3,默认使用串口2作为与飞控通信的串口。

图2.1 GRTK模块接口图

另外,模块正面还有四个led指示灯,左侧三个显示模块运行状态,分别是3D Fix定位状态、运行错误和RTK定位状态;右侧单独一个指示灯用于显示供电状态。

GRTK模块支持双天线测向,其中左天线为主天线,右天线为从天线,单天线使用需连接主天线。

硬件连接

  • 基站(Base)端连线图

图2.2基站连线图

图2.3基站三脚架安装示例

  • 移动站(Rover)端连线图

图2.3移动站端连线图

  • 双天线移动站(Rover)端连线图

图2.4 双天线移动站端连线图

在不使用基站的时候,仅使用移动站也可以作为常规定位设备进行定位,接线如图2.3所示。

基站与移动站共同使用可组成RTK厘米级定位系统,基站支持即插即用。

移动站双天线测向需要将主从天线按照主后从前与航向保持一致,主从天线间距应大于30cm以保证测向精度。

指示灯&定位状态

    GRTK模块上共有4个指示灯,具体含义如下表所示:

以一套GRTK(基站+移动站)为例。

基站正常工作状态灯如下:

POWER灯和FIX灯常亮,其他灯不亮;

移动站正常工作状态一:

POWER灯和FIX灯常亮,其他灯不亮,移动站已进入标准3D单点定位;

移动站正常工作状态二:

POWER灯、FIX灯、RTK灯常亮,其他灯不亮,移动站已进入RTK固定解。

定位数据说明

GRTK模块默认输出NMEA协议定位数据,连接USB转TTL与GRTK模块com2的Tx2与Rx2,可利用串口助手读取或者配置输出语句。GRTK移动站和基站在出厂时均已配置,非专业人士请勿随意配置设备,另外推荐使用友善串口助手设置 换行为CR&LF 再进行输出语句的换行。

常用配置语句

freset

恢复出厂设置,注意:出厂设置的波特率为 115200.

config

查询接收机串口状态

config com1 115200

设置 com1 波特率为 115200
可以分别对 com1、com2、com3 设置为 9600, 19200,
38400, 57600, 115200, 230400,460800 中任意一个波特率

saveconfig

保存设置

单天线移动站

  • 出厂默认以5Hz速率输出语句:

$GPGGA: Global positioning system fix data
$GPRMC: Recommended minimum data
$GPHDT: Output current heading information
$KSXT: Time, positioning and heading of GNSS receiver

  • 配置语句

对于有其他语句信息需求的,可通过串口自行配置:

  1. GPXXX COMX XX(语句+com口输出数据+语句输出速率)
  2. SAVECONFIG(保存设置)
  3. 重置命令

如在配置或者使用过程中发现输出语句与出厂时不一致,可通过以下命令进行重置输出:

FRESET
GPGGA COM2 0.2  
GPRMC COM2 0.2  
GPHDT COM2 0.2  
KSXT COM2 0.2
SAVECONFIG
(PS:此处需要使用CR&LF换行)

双天线测向移动站

  • 出厂默认以5Hz速率输出语句:

$GPGGA: Global positioning system fix data
$GPRMC: Recommended minimum data
$GPHDT: Output current heading information
$KSXT: Time, positioning and heading of GNSS receiver

  • 配置语句

对于有其他语句信息需求的,可通过串口自行配置:

  1. GPXXX COMX XX(语句+com口输出数据+语句输出速率)
  2. SAVECONFIG(保存设置)
  3. 重置命令

如在配置或者使用过程中发现输出语句与出厂时不一致,可通过以下命令进行重置输出:

FRESET
GPGGA COM2 0.2  
GPRMC COM2 0.2  
GPHDT COM2 0.2  
KSXT COM2 0.2
SAVECONFIG
(PS:此处需要使用CR&LF换行)

使用教程

目前版本的GRTK厘米级定位系统,支持NMEA协议定位数据的输出,以下教程基于Ardupilot固件采用Mission Planner地面站进行操作说明。

设备接线

  • 请在接线前准备好如图3.1所示的硬件用于连接:

图3.1 硬件实物图

  • GRTK可以通过基站与移动站间通过独立链路通信或者地面站转发基站数据的两种方式实现RTK定位

独立链路方式下:

  1. 请将GRTK Rover的com2口连接到pixhawk的GPS口,com1口连接与Base端通信的数传设备。
  2. 请将GRTK Base进行天线连接和供电,并将com1口连接与Rover端通信的数传设备。

地面站转发基站数据方式下:

  1. 请将GRTK Rover的com2口连接到pixhawk的GPS口;
  2. 请将GRTK Base 上电,并将其com1口与电脑进行串口连接;
  3. 打开Mission Planner地面站,找到初始设置处的可选硬件,选择RTK/GPS Inject

d. 选择正确的com口,并点击Connect;

e. 等待大约一分钟Base完成基站定位,此时RTCM栏中的红色都变为绿色,且显示当前基站的经纬度信息,即已实现地面站转发Base定位数据。

PS:移动站、基站和数传需单独供电。

Mission Planner的设置

GRTK Base支持即插即用,不需要在地面站进行额外的设置。但在实际使用RTK之前,需要先在MP中对飞控进行参数设置,下面给出必须的参数设置(适配Ardupilot 固件v4.2.0或更高版本),具体可参考:

https://ardupilot.org/copter/docs/common-gps-for-yaw.html

1、配置GPS协议为NMEA,并将GPS数据刷新速率设置为5Hz(默认值)

参数列表:

  • GPS_TYPE 5   设置为NMEA输入
  • GPS_RATE_MS 设置为200ms,频率为5Hz

2、使用双天线测向需启用GPS航向

参数列表:

    • EK3_SRC1_YAW 设置为2,使用GPS提供航向

如需关闭磁罗盘:

  • COMPASS_ENABLE 设置为0

RTK定位实测

1、移动站篮球场框线绘制效果实测

图3.4 RTK实测效果图

2、无人车自动航线任务实测

图3.5 RTK自动航线任务效果图

基站两种工作模式

GRTK基站有两种工作模式,为自主优化设置基站模式和固定基站模式。自主优化设置基站:即在将架设基站的点没有精确坐标。可设置基站在安装点上进行一定时间内自定位取平均值,设置为基站的坐标。固定基站:即在将架设基站的点有精确坐标。需要将基站的精确坐标输入基站。

自主优化设置基站模式配置

GRTK基站默认工作模式是自主优化设置基站模式。配置方法如下:使用USB转TTL模块将基站的串口2连接到电脑,电脑运行串口调试助手,打开对应的串口,波特率为115200。基站返回当前的位置信息。

将如下的命令(注意命令需要以换行符结尾)通过串口发送给基站,完成配置。

mode base time 60 1.5 2.5

命令解释:基站自主定位60秒;或者水平定位标准差<=1.5m,且高程定位标准差<=2.5m时,把水平定位的平均值和高程定位的平均值作为基站坐标值。用户可以根据自己的需求修改参数。

配置完成后,将如下的命令(注意命令需要以换行符结尾)通过串口发送给基站,保存配置。

saveconfig

固定基站模式配置

固定基站模式配置分为两步,第一步获取当前的精确坐标,第二步将基站的精确坐标输入基站。

第一步 获取当前的精确坐标

使用USB转TTL模块将基站的串口2连接到电脑,电脑运行串口调试助手,打开对应的串口,波特率为115200。基站返回当前的位置信息。

       将如下的命令(注意命令需要以换行符结尾)通过串口发送给基站。

mode base time 60 1.5 2.5

命令解释:基站自主定位60秒;或者水平定位标准差<=1.5m,且高程定位标准差<=2.5m时,把水平定位的平均值和高程定位的平均值作为基准站坐标值。用户可以根据自己的需求修改参数。

观察获取到的WGS84坐标,当坐标稳定时,表示基站初始化完成。

复制基站输出的位置信息如下

#BESTPOSA,COM2,0,91.0,FINE,2164,52077.000,420887,32,18;SOL_COMPUTED,FIXEDPOS,32.02245993006,118.85899391094,68.5505,2.0115,WGS84,0.0000,0.0000,0.0000,"",0.000,0.000,40,28,28,16,0,06,03,53*17b29c25

获取经度纬度和高程数据如下

32.02245993006,118.85899391094,68.5505(这是示例数据,请根据实际测量数据进行替换)

第二步 将基站的精确坐标输入基站

根据基站的精确坐标生成配置命令

mode base 32.02245993006 118.85899391094 68.5505

将配置命令(注意命令需要以换行符结尾)通过串口发送给基站。

配置完成后,将如下的命令(注意命令需要以换行符结尾)通过串口发送给基站,保存配置。

saveconfig

注意事项

1、使用本公司RTK套装,基站端支持即插即用,如果仅购买了移动端,使用其他公司的基站端需要在地面站进行额外的RTK基站端配置,无法保证兼容性和定位精度。

2、本产品为定位设备,需要搜索卫星定位,使用时应尽量在空旷无干扰的场地测试。

3、RTK的定位状态需以地面站显示为主。

GRTK购买

1、购买地址

淘宝店铺:北力电子

2、发货清单

基站安装架
名称 数量 单位
底板 1
盖板 1
天线底板 1
45mm铝柱M3 8
8mm铝柱M3 12
M3x5螺钉 45
三脚架快拆铝板 1

GRTK模块
名称 型号 数量 单位
GRTK BASE 1
GRTK ROVER 1
多星多频GNSS天线 BL-320 3
分电板 标准 2
电源线 GH1.25 4P-GH1.25 4P(接分电板) 2
BASE端配线 GH1.25 5P-GH1.25 5P(接数传) 1
ROVER端配线 GH1.25 5P-GH1.25 5P(接数传) 1
GH1.25 6P-GH1.25 10P(接pixhawk控制器) 1
GH1.25 6P-杜邦头(用于配置GRTK) 1

图4-1  发货实拍图

3、物流

       本店国内默认顺丰包邮,国外客户需根据实际情况采取合适的物流方式。

4、关于批发

       根据批发数量的不同,批发价格不等,有批发需求请联系客服。

  • 视频

   测试视频一:

   绕操场全程,厘米级压线精度:

https://www.bilibili.com/video/BV1Bg411g7Sy

   测试视频二:

   GRTK30s快速部署基站

https://www.bilibili.com/video/BV1Kq4y1L7W8

   测试视频三:

   GRTK静止精度&无人机光绘:

https://www.bilibili.com/video/BV1iV411j7M8